INTA 8000: Science, Technology, & International Affairs I
SNSP Seminar
Fall 2019

Dr. Margaret E. Kosal
Associate Professor
Sam Nunn School of International Affairs

3 credits
Thursday 12:00-2:45 PM
Ivan Allen College/Habersham G-17

Office hours: TBD
& by appointment
Habersham 303
nerdgirl@gatech.edu

Overview
The course, as part of the Sam Nunn Security Program (SNSP), will explore and enable better understanding of the interactive roles; the effects of science and technology; and the economic, institutional, policy, and social contexts in which science and technology may implemented. This will be accomplished through extensive and intensive in-class discussions, guest lectures by experts, individual and group projects, and off-site visits to policy-making and policy-executing organizations, agencies, and institutions.

In this course, we will examine the relation between science and technology and international affairs, with an emphasis on national and international security. Rarely does science or technology (S&T) itself drive foreign or national security policy; the potential security, economic, or other national-level consequences of the application of science to human endeavors is where technology intersects with policy predominantly. Science &
technology can be causal, intervening, or determinant factors. The ability to recognize, communicate, and identify nodes for intervention, change, or influence are strategic requirements for effective use of S&T domestically and internationally.

The ways in which governments act as proponents and sustainers, as well as consumer of S&T, vary significantly. These issues reflect important questions about the relationship between science, technology, and policy. Is scientific and technological development governable, and if so, who is responsible for governance? Is more and better science necessary for policymaking? Who is the best judge of the value of scientific research programs and the validity of scientific findings in policy contexts? Is the furtherance of scientific understanding and technological development always socially benign, and who decides?

Technological changes are anticipated to occur over the ensuing decades in a globalized world characterized by complex security challenges. While emerging technologies promise scientific breakthroughs, they also generate skepticism and controversies. How will these S&T developments impact stability, and what are the potential security threats? How will such emerging technologies affect the overall international security discourse?

This course introduces theories and methodologies for science and technology policy analysis. Students will learn how science and technology policy is made, with specific attention to the roles of government agencies, expert advisory committees, and the public. This analytic toolkit will be drawn from literature in a range of disciplines, including political science, public policy, economics, sociology, and history.

This course will provide:
- Background on the science & technology policy formation, with an emphasis on US systems and security policies
- A multidisciplinary toolkit for thinking about science & technology policy and security, including an understanding of social science methods, theories, and approaches to science & technology policy and security.

Learning Objectives

1. Students will demonstrate the ability to describe the causal and determinant relationships between science and technology (S&T) and security across different topic areas.
2. Students will demonstrate ability to apply concepts and multiple methodologies to explain phenomena in security related to S&T.
3. Students will understand and be able to assess relationships among organizational institutions & structures at the local, national, regional & global level and S&T.
4. Students will become familiar with multiple major governance entities (e.g., international agreements and institutions) relevant to S&T and security.
5. Students will understand and learn about how S&T shaped history, promising S&T developments (such as information and communications technology, cognitive and
biological sciences, robotics, artificial intelligence, and nanotechnology), and pressing S&T challenges for the future in an international context.

6. Students will practice effective communication skills. Students will be able to express their arguments clearly and effectively both in written reports and in their research and oral presentations.

7. Students will learn valuable team working skills. Students will be able to work in small groups in a way that demonstrates respect for their colleagues and efficiency in working collaboratively towards projects and goals.

Class Requirements

1) Attendance & participation (10%)
2) Scientist / engineer in policy (20%)
3) International agency/office/agreement (20%)
4) Group term project (50%)
 a. Proposal
 b. Status report
 c. Semester document
 d. Semester presentation

The grading rubric will be discussed during the first week of class.

Attendance and Participation

You are expected to make reasonable efforts to attend all classes and participate actively. I recognize that both anticipated and unanticipated events may overlap with the regularly scheduled class.

Arriving Late and Departing Early

While I recognize that both anticipated and unanticipated events may overlap with the regularly scheduled class, if you have an ongoing conflict that occurs at the same time as this class, perhaps you should reconsider. Repeated tardiness reflects poorly on you and can disrupt the entire class. If you ask to depart my class early for another event, you are communicating what is your priority. I reserve the right to make attendance a portion of the grade and penalize for lateness if it is a reoccurring problem.

Electronic Devices

They are allowed. My right to rescind is reserved. It has been found that use of electronic devices can hinder learning and impact your grade, see e.g., “Checking phones in lectures can cost students half a grade in exams” and primary data included therein, https://phys.org/news/2018-07-students-grade-exams.html. The other problem is rudeness or the unintended perception of rudeness, which is especially bad when/if we have guest speakers. Unfortunately this has been a problem in the past on multiple occasions, so it now gets a section in the syllabus.
Academic Integrity

For all assignments, materials, and exams, you are expected to maintain the highest academic integrity.

While academic integrity takes many forms, one of the most common violations is plagiarism. Per the Georgia Tech Honor Code, plagiarism is an act of academic misconduct. The Georgia Tech Honor Code specifies: “Plagiarism’ is the act of appropriating the literary composition of another, or parts of passages of his or her writings, or language or ideas of the same, and passing them off as the product of one’s own mind. It involves the deliberate use of any outside source without proper acknowledgment.”

Plagiarism ranges from the blatant, such as purchasing a term paper or copying on an exam, to the subtle, e.g., failing to credit another author with the flow of ideas in an argument. Simply changing a few words from the writings of other authors does not alter the fact that you are essentially quoting from them and appropriating their ideas.

Paraphrasing of this sort, where you use the words of another almost verbatim without acknowledging your source, is the most common form of plagiarism among students and in general. When you state another author’s viewpoint, theory, or hypothesis – especially when it is original or not generally accepted – you must also include a reference to the originator. In general citations are unnecessary when the information is considered common knowledge or a matter of widespread agreement or controversy.

For more information on the Georgia Tech Honor Code, please see http://www.honor.gatech.edu.

In short: just don’t cheat.

This is one instance when asking forgiveness rather than permission is *not* a good strategy.

Accommodations for Students with Disabilities

Per Georgia Tech policy: if you have a significant disability, special arrangements will be made to accommodate documented needs (through the ADAPTS office). Please contact the professor after class or at your earliest convenience.

THE SYLLABUS IS DYNAMIC & IS LIKELY TO BE UPDATED THROUGHOUT THE SEMESTER.
Course Calendar and Content

Readings will be assigned and distributed in hard copy or via T-Square in a timely manner throughout the semester.

Week 1

22 August
- Introductions
- Introduction to the SNSP
- Semester and academic year scope
- Framing the course, current problems, policy, doctrine, and debate; establishing process
- Subject matter overview and class organization
- Scientists and engineers as policy advisors for national and international leadership
- Discussion of project possibilities
- SNSP Challenge coin

Readings
- Army G2, The Future Operational Environment (for the [Presidential] Transition Team), 25 November 2016 (will be distributed in class)
- IANS, “Technology Key to Military Preparedness,” Free Press Journal (India), 10 January 2015, http://freepressjournal.in/technology-key-to-military-preparedness/ (Will be distributed in class, as link no longer works)

Further reading

Submit bio & photo NLT Tuesday, 27 August 1200.

Week 2

29 August
- IR Theory
- What is policy?
- Technological determinism
 - Or why Pakistan has the bomb and Japan doesn’t
- Frameworks for studying science, technology, and policy
 - And why social scientists dislike *[to put it diplomatically] Jared Diamond’s Guns, Germs, and Steel ... & it’s not the same reason white supremacists dislike like the book either*
- Offense-Defense Theory

Readings

Optional/further reading

Week 3

5 September
– Discussion of project proposals

Team and individual project proposals due electronically NLT 10AM directly to MEK with cc to class list serv.

Week 4

12 September
– US Defense establishment
– Strategy, operations, and tactics

Readings
Optional/further reading

Week 5

19 September
- Guest lecture on “IR Methods” by Professor Anjali Thomas.
- Group work on year-long project proposal
Readings

Further Reading

Week 6
26 September
- Discussion of scientists and engineers involved in policy creation, implementation, and execution

Readings
- Browse - Vannevar Bush, “Science: The Endless Frontier,” 1945 (may be found online in multiple places, e.g., in html at the NSF web site, https://www.nsf.gov/od/lpa/nsf50/vbush1945.htm or pdf scan of the original document, https://ia600408.us.archive.org/18/items/scienceendlessfr00unit/scienceendlessfr00unit.pdf)
- Margaret E. Kosal, On the Role of Science Diplomacy in the 21st Century, Remarks prepared for the 2nd Annual Neuriter Roundtable on Science Diplomacy, 18 December 2013, Washington DC (to be distributed in class)

Week 7

3 October
– How S&T research programming and funding is done within the US federal government, the connections to strategy, and the budget processes
– Other parts of the USG (besides DoD) important for national security
 o State
 o IC
 o Everybody else

Readings
 o FY2020 PBR Research Development, Test & Evaluation Programs (R-1), Budget Appendix Display (R-1), March 2019, https://comptroller.defense.gov/Portals/45/Documents/defbudget/fy2020/fy2020_r1.pdf (There’s also an MS Excel sheet you can download)
Week 8
10 October
- Project updates

Week 9
17 October
- TBD

Week 10
24 October
- Discussion of international S&T treaty, agreement, organization, or agency

Week 11
31 October
- Weapons of Mass Destructions (WMD), i.e., nuclear, chemical, and biological agents and weapons
- Nonproliferation, arms control, and disarmament
- International institutions – the NPT, CWC, & BWC +
- Deterrence, coercion, and compellence

Readings

Optional/further readings

Week 12

7 November

– WMD (continued)

– WMD Terrorism

Readings

Optional/further reading

- Jonathan Tucker (editor), Toxic Terror: Assessing Terrorist Use of Chemical and Biological Weapons, MIT Press, 2000

General resources and more readings on terrorism

- Bruce Hoffman, Inside Terrorism (2006 edition)
- Marc Sageman, Leaderless Jihad
- Jessica Stern, Terror in the Name of God: Why Religious Militants Kill

We’ll continue discussing issues related to WMD throughout Spring 2020.

Week 13

14 November
- Guest lecture, General Phil Breedlove, USAF (ret)
 Short bio: https://www.af.mil/About-Us/Biographies/Display/Article/104769/general-philip-m-breedlove/

Briefing book pages due to MEK NLT Sunday, 10 November at noon.

Week 14

21 November
- Feedback on presentations
– Semester wrap-up and synthesis of topics covered
– Spring Break DC Trip Planning
– Discussion of next semester

Week 15

28 November
– No Class, Thanksgiving Recess

The CISTP conference room/library in 307 Habersham is available to members of this seminar for small group meetings, etc. The material in that room may be borrowed on an honor system basis for any purpose that interests you.

Final paper due 29 November; late papers accepted without penalty until noon 12 December.

No Final Exam
One More Thought

Collaboration, sharing ideas, etc.

“Talk about your ideas. Help your colleagues work out their problems. Pay attention to what other people are doing, and see if you can learn something, or if you can contribute.

“Other than the mundane goal of getting your degree, you are in school to push back the frontiers of knowledge. You do this by generating and exploring new ideas. There is no way that you will ever be able to explore all of the ideas that you generate, but some of those ideas that you discard might be just what some of your colleagues are looking for.

“Human nature tends to make us want to hoard our own ideas. You have to fight against that. Human nature also tends to make us treat other people’s ideas with disrespect. The closer the idea to our own area of research, the more likely some part of our brain will try to find fault with it. Fight against that even harder.

“You will find many people in academia who give in to the dark side. These Stealth Researchers never discuss what they are working on, except in vague and deceptive terms. They are experts at finding fault with the work of their colleagues. The Stealth Researcher writes papers that make very grand claims, but you can never quite figure out what they’ve accomplished and what they haven’t. He is a master at omitting the key detail of the design or process that would enable others to follow his work. The Stealth Researcher is a knowledge diode, a roach motel for information. He has replaced the fundamental goal of discovery and publication with the twin evils of ego and empire.

“Be open about what you are working on. Be honest about what you’ve done, and even more honest about what you haven’t. Don’t ever hide an idea for fear that someone will steal it, even if you are talking to a Stealth Researcher. With patience, maybe we can cure them.”

Prof Kristofer S.J. Pister
Electrical Engineering and Computer Science, UC Berkeley